Virtually no one can walk in off the street and serve as a human data scientist. Although we approach analytics in much the same way as data scientists in other industries, there’s so much more to it. The competencies we require in a human data scientist team form a rather daunting list, including:
There are certainly data scientists in other organizations in other business sectors (such as financial services and retail for example) who are adept at using the latest analytical techniques and sophisticated computing technologies with other forms of big data. But they may not have the in-depth knowledge of the healthcare data and know-how to integrate various data assets and to make sense of it. This is probably why, when life sciences organizations attempt to build their own analytics team to do the type of customized analytics that we perform, they find that it is not that easy. Often, they realize that they need to partner with our human data scientists and, of course, the whole ecosystem of support we have around us at IQVIA.
We work closely with principals and the IQVIA sales community to help clients identify business issues and identify what healthcare data assets would be best in providing solutions. We collaborate with our technology teams to leverage the latest technology and work with our colleagues in production and data management teams to curate and connect data. It takes all of us working together to get to the answers that clients seek.
It may surprise people to learn that the technical aspects of being a human data scientist are, for us, not really the most challenging part of the job; rather, they are one of the most exciting parts. Human data scientists thrive on opportunities to break new ground in developing new analytical approaches to improve patient care and our clients’ business. In fact, IQVIAN human data scientists already have several patents pending on our analytical techniques. Developing innovative analytic techniques to drive healthcare forward is a challenge we embrace.
Another aspect of the work that many of us welcome is the opportunity to work with new data sets – a benefit of the digital age and the generation of more and more (non-identified) human data. We’re already working with non-identified genomics data, patient registry data, data collected from physician networks, data from public sources such as health authorities, data from insurance companies, and unstructured data such as physician notes within electronic medical records.
I think that for most of the work we do, the most important part is the first step: What question needs to be answered? What business problem must be solved? Often, clients approach us by requesting a particular analysis using a particular data set. But, after we probe to understand the context and the underlying issue, we recommend using a different analysis or a different data source altogether. Yes, sometimes a human data scientist can help with forming the question, not just the insights.
When we’re working exclusively with IQVIA data, the project usually proceeds according to the plan, as the data is ready for us to work with in developing models and algorithms. Often, though, we work with a client’s data or data from an agency or another external source. When that’s the case, we have to get the data ready for analysis. It has to be cleaned, controlled for quality, formatted etc. We automate these tasks as much as possible using models, ML, and natural language processing (NLP). Even with the models we use to clean data, this step is very time consuming.
Perhaps the uniqueness of our work can best be appreciated through a few examples of completed projects. The human data scientists within our Data Science and Advanced Analytics group have recently:
To learn more about these case studies, please visit our human data science page.
There’s a high bar for becoming a human data scientist – and there should be. The work is inherently different from that of other data scientists, and we must be equipped with very specialized knowledge, skills, and tools to derive the answers needed to improve human health and make a difference in peoples’ lives.